Genetic variation of the invader Caprella scaura: introduction events and 7-year monitoring at local scale

Martínez-Laiz G¹*, Ros M², Guerra-García JM¹, Faasse M³, Santos AM^{4,5}, Cabezas MP^{4,5}

¹University of Seville, Spain. ²University of Cadiz, Spain. ³eCOAST Marine Research, Yerseke, Netherlands. ⁴University of Porto, Porto, Portugal. ⁵CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Vairão, Portugal

Caprella scaura (Templeton, 1836)

- Recorded in all oceans except for the Arctic
- High fecundity, trophic plasticity and aggresive intra and
- Native range under discussion: Central, southwestern Atlantic Ocean | IndoPacific and Australia | Temperate northwestern

2016 2010 2011 2012 2017

Concatenated COI + 16S genes

† POST-ESTABLISHMENT

SUCCESS

UNFAVOURABLE ENVIRONMENTAL FLUCTUATIONS

Cadiz 2017: highest T^a and rain fluctuations recorded in the last 10 years

HUMAN-MEDIATED CHANGES IN PROPAGULE PRESSURE

Vector dependant, but numerous foreign donors (shared Hp and low F_{ST}) that could easily refuel the propagule input by exchanging gene flow

5 Kilometers

Take home messages

- A vector regulation strategy has the potential of compromising the success of established non-native populations, when they undergo vulnerability periods due to the challenging conditions of marinas.
- The use of molecular tools in a time series approach (not yet well-extended) could serve management, by identifying the ideal time window to put in action contingency/eradication measures so that they are cost-effective.

